RetroArch 1.8.9 released!


RetroArch 1.8.9 has just been released.

Grab it here.

A Libretro Cores Progress Report will follow later.

Remember that this project exists for the benefit of our users, and that we wouldn’t keep doing this were it not for spreading the love with our users. This project exists because of your support and belief in us to keep going doing great things. If you’d like to show your support, consider donating to us. Check here in order to learn more. In addition to being able to support us on Patreon, there is now also the option to sponsor us on Github Sponsors! You can also help us out by buying some of our merch on our Teespring store!

Highlights

AI Service – Custom accessibility service support

The AI service feature has included new changes to allow closer integration between the service selected and the game being played, allowing the service to read and press gamepad buttons along with the current screen image. The example video above shows a custom service (still in development) designed to make Final Fantasy 1 accessible and playable by blind users.

When started, the AI service will continually parse the screen and describe what’s being shown. When in a town or overworld view, it will describe what’s around the player to the west, north, east, and south, as well as any new things of interest that have appeared on screen (eg: a townsperson, a weapon shop, treasure chest, etc.). When the emulator is paused, it will give a more detailed description of what’s on the screen, including how far the player can walk in all directions and all things of interest along with their coordinates relative to the player. If the player holds the select button at this time, then the AI service will read out the list of things of interest on the screen and allow the player to scroll through them and select one. When selected, the AI service will unpause the game and move the player to that thing and interact with it.

When on a menu or battle screen, the service will read out the text on the screen and the currently selected menu option.

We will have more information on this for you soon after the initial testing and feedback is over.

Core Management Options

  • The software license of each core is now shown in the ‘Core Downloader’ and ‘Load Core’ screen.
  • Pressing RetroPad Select on a Core Updater entry will now display any text in the description field of its info file
  • Installed cores are now highlighted via a [#] symbol
  • Pressing RetroPad Start on a selected, installed entry opens the Core Information menu (when using Material UI, swiping left or right triggers the same action). This means we can now view bios info etc. – and more importantly delete cores – without jumping through all the hoops of loading a core first and navigating all over the place
  • It’s now possible to hide ‘Experimental Cores’ from being shown in the ‘Core Downloader’ menu screen.

Backup cores when updating

By default now, a backup of the current Libretro core will be made when you upgrade a core from RetroArch’s builtin Updater service. In addition, you can also ‘freeze’ a core. ‘Freeze’ in this context means that the Updater service will not be able to overwrite your current core with the latest version from the Updater service.

Vulkan WSI improvements

There were some problem platforms with WSI (Window System Interface) currently, which version 1.8.9 partly addresses. This should theoretically reduce stalls on integrated GPUs.

  • Intel Mesa was broken when using Fences, we have to use Semaphores to acquire the swapchain or the entire GPU stalls.
  • Add support for either using fences or semaphores when syncing.
  • Prefer using semaphores for integrated GPUs (such as Intel HD) as it promotes better throughput over fences.
  • Do not use mailbox emulation on Android.
  • Also, to make this work, decouple frame index from swapchain index with regards to CPU-side synchronization. Before, swapchain index would be coupled with frame context, which is somewhat naive.

Changelog

What you’ve read above is just a small sampling of what 1.8.8 has to offer. There might be things that we forgot to list in the changelog listed below, but here it is for your perusal regardless.

1.8.9

  • AUTO SAVESTATES: Ensure save states are correctly flushed to disk when quitting RetroArch (fixes broken save states when exiting RetroArch – without first closing content – with ‘Auto Save State’ enabled)
    BUILTIN CORES: Builtin cores like ffmpeg and imageviewer would previously try to erroneously load a dynamic core named ‘builtin’ – this would fail and would just be a wasteful operation – this now skips dylib loading in libretro_get_system_info for builtin cores
  • CHEEVOS: Report API errors when unlocking achievements or submitting leaderboards
  • CHEEVOS: Support less common file extensions
  • CHEEVOS: Disable hardcore mode when playing BSV file
  • CHEEVOS: Correctly report unlocked non-hardcore achievements when hardcore is paused
  • CHEEVOS/M3U: Bugfix – did not handle absolute/relative paths in M3U files correctly before
  • CHEEVOS/M3U: Bugfix – it didn’t handle comments/directives
  • CHEEVOS/M3U: Bugfix – it doesn’t handle trailing whitespace
  • CHEEVOS/M3U: Bugfix – failed when loading M3U files with certain line endings
  • CORE MANAGEMENT: Add ‘core management’ menu (Settings -> Core)
  • CORE MANAGEMENT: Add option to backup/restore installed cores
  • CORE MANAGEMENT: Improved core selection logic
  • CORE INFO: Search search optimisations
  • CORE DOWNLOADER: Rename ‘Core Updater’ to ‘Core Downloader’
  • CORE DOWNLOADER: Add ‘Show Experimental Cores’ setting under Settings > Network > Updater
  • CORE DOWNLOADER: Core licenses are now shown for all entries in the Core Updater menu
  • CORE DOWNLOADER: Pressing RetroPad select on a Core Updater entry will now display any text in the description field of its info file
  • CORE DOWNLOADER: Installed cores are now highlighted via a [#] symbol
  • CORE DOWNLOADER: Pressing RetroPad start on a selected, installed entry opens the Core Information menu (when using Material UI, swiping left or right triggers the same action). This means we can now view bios info etc. – and more importantly delete cores – without jumping through all the hoops of loading a core first and navigating all over the place
  • CORE DOWNLOADER/UPDATER: Add option to automatically backup cores when updating
  • DISK CONTROL: Enable ‘Load New Disc’ while disk tray is open
  • INPUT: Added a hotkey delay option to allow hotkey input to work properly when it is assigned to another action
  • INPUT: Remove ‘All Users Control Menu’ setting, was buggy and will be properly reintroduced after input overhaul
  • LINUX: Set default saves/save states/system paths
  • LOCALIZATION: Add Persian language
  • LOCALIZATION: Add Hebrew language
  • LOCALIZATION: Add Asturian language
  • MENU: Proper line wrapping for message dialog boxes
  • MENU/HOTKEYS: Add sublabels to all hotkey bind entries
  • MENU/QUICK MENU: Suppress the display of ’empty’ quick menu listings when closing content
  • MENU/OZONE: Performance improvements
  • MENU/SDL: Add mouse controls
  • OPENGL1/VITA: Initial changes for HW context without FBO
  • OVERLAYS: Add options for moving the on-screen overlay
  • PLAYLISTS/WINDOWS: Fix core path entries in image/video/music history playlists
  • PS2: Add back CDFS support
  • SDL/GL: Advertise GLSL support
  • VIDEO/WIDGETS: Fix heap-use-after-free errors, leading to memory corruption
  • VITA: Added custom bubbles support
  • VITA: VitaGL update
  • VULKAN/WSI: Better frame pacing
  • VULKAN/WSI: Fix Intel Mesa being broken when using Fences, we have to use Semaphores to acquire the swapchain or the entire GPU stalls
  • VULKAN/WSI: Add support for either using fences or semaphores when syncing
  • VULKAN/WSI: Prefer using semaphores for integrated GPUs as it promotes better throughput over fences
  • VULKAN/WSI/ANDROID: Do not use mailbox emulation on Android
  • UWP/XBOX: Potentially improve performance by enabling ‘Game Mode’

ParaLLEl RDP updates

Several important things got fixed in the latest core updates for ParaLLEl N64.

Changes

– A new deinterlacing system has been implemented that should be significantly better than the old one. Especially noticeable in games like Resident Evil 2, Turok 2’s high-res mode, Daikatana’s high-res mode, Star Wars Episode 1 Racer’s high-res mode, and tons of other games.

It just blits with a linear filter with an Y offset based on field state. Very basic, but seems good enough. Avoids the worst aspects of bob and weave

Crop overscan added

A game rendered with Angrylion and/or ParaLLEl RDP usually retains the black borders of the screen that went unused. With the ‘Crop Overscan’ option, you can strip these away from the final output image.

See here a good example – Daikatana in high-res mode. By default, it has big borders.

Steam Launch lineup revealed

So, it’s been a long time since we (prematurely) announced our intent to launch RetroArch on Steam. We’re nearing the finish line now however, so now is as good as any a time to start discussing how things are going to roll out.

Will launch on Windows first (Linux later)

We will be releasing on Windows first, with a release on Linux scheduled later (no ETA).

We are trying to limit our support burden at launch here since we are (understandably) concerned about the large amount of support requests and feedback we are bound to be receiving. Adding Linux right from the bat would further exacerbate that.

10 Cores Available On Launch Day

We are deciding to launch with 10 cores at launch. These cores have already been approved and uploaded on Steam. They are as follows:

There will be no ‘Core Downloader’ in RetroArch, or anything that is not hosted on Steam in fact. To obtain cores, you need to install cores separately that we provide as ‘DLC’. These are all free just like RetroArch itself.

NOTE: We need to stress – on its own, without installing any of the cores, the most you will be able to do with RetroArch is watch some movie files and playback music files through its builtin ffmpeg core. To make it do anything else, you will have to install cores.

Differences between regular RetroArch and Steam version

Apart from these aforementioned changes, there will be no substantial differences for now in the Steam version. We understand that even though we have consistently improved the User Experience and tried to make things more easily accessible that we will still be in for a lot of criticisms over the initial learning curve, so we’ve pretty much resigned to the fact that this will happen and will just brace for impact and try to do as much as what we can with the criticism that will inevitably be piling on. We will try to do our best to be as receptive to the feedback as possible with the thickest amount of skin possible, and try to suitably make some much needed UI changes.

This is also what helped inform our decision to go with 10 cores. We could have launched with over 60 cores, sure, but the ensuing fallout would have been a mess and it would have been near impossible to focus on bug reports and issues piling in. By focusing on 10 cores, we can do some much-needed Quality Control where issues inevitably get picked up, we can respond to it and in the process improve the quality of the core. This kind of isolated feedback time with a specific batch of cores is something we have found ourselves in the past always lacking, since it was always off to do the Next Big Thing as new features, cores, and other developments are made on an almost weekly basis. This gives us the much-needed time to focus on a specific batch of cores and polish them before we move on to the next batch of cores.

Coming soon – paraLLEl N64 RDP – Resolution upscaling! (Video demonstration)

ParaLLEl RDP this year has singlehandedly caused a breakthrough in N64 emulation. For the first time, the very CPU-intensive accurate Angrylion renderer was lifted from CPU to GPU thanks to the powerful low-level graphics API Vulkan. This combined with a dynarec-powered RSP plugin has made low-level N64 emulation finally possible for the masses at great speeds on modest hardware configurations.

ParaLLEl RDP will be coming to Mupen64Plus Next soon

ParaLLEl RDP has first seen its debut in ParaLLEl N64, but it will soon make its way into the upcoming new version of Mupen64Plus Next too. Expect increased compatibility over ParaLLEl N64 (especially on Android) and potentially better performance in many games.

ParaLLEl RDP Upscaling

Jet Force Gemini running with 2x internal upscale
Jet Force Gemini running with 2x internal upscale

But that’s not what this article is going to be dedicated to. It quickly became apparent after launching ParaLLEl RDP that users have grown accustomed to seeing upscaled N64 graphics over the past 20 years. So something rendering at native resolution, while obviously accurate, bit-exact and all, was seen as unpalatable to them. Many users indicated over the past few weeks that upscaling was desired.

Well, you won’t have to wait too long, and as a demonstration, today we premiere a 11-minute long YouTube video showcasing ParaLLEl RDP running at 4 times the native resolution. Given an input resolution of 256×224, that means the game is rendering internally at 1024×896.

Now, here comes the good stuff with LLE RDP emulation. Unlike so many HLE renderers, ParaLLEl RDP fully emulates the RCP’s VI Interface. As part of this interface’s postprocessing routines, it automatically applies the equivalent of 8x MSAA (Multi-Sampled Anti-Aliasing) to the image. This means that even though our internal resolution might be 1024×896, this will then be further smoothed out by this aggressive multisampling postprocessing step.

Super Mario 64 running on ParaLLEl RDP with 2x internal upscale
Super Mario 64 running on ParaLLEl RDP with 2x internal upscale

This results in even games that run at just 2x native resolution looking significantly better than the same resolution running on an HLE RDP renderer. Look for instance at this Mario 64 screenshot here with the game running at 2x internal upscale (512×448).

Screenshots

The screenshots below here show ParaLLEl RDP running at its maximum internal input resolution, 8x the original native image. This means that when your game is running at say 256×224, it would be running at 2048×1792. But if your game is running at say 640×480 (some interlaced games actually set the resolution that high, Indiana Jones IIRC correctly), then we’d be looking at 5120×3840. That’s bigger than 4K! Then bear in mind that on top of that you’re going to get the VI’s 8x MSAA on top of that, and you can probably begin to imagine just how demanding this is on your GPU given that it’s trying to run a custom software rasterizer on hardware. Suffice it to say, the demands for 2x and 4x will probably not be too steep, but if you’re thinking of using 8x, you better bring some serious GPU horsepower. You’ll need at least 5-6GB of VRAM for 8x internal resolution for starters.

Anyway, without much further ado, here are some glorious screenshots. GoldenEye 007 now looks dangerously close to the upscaled bullshot images on the back of the boxart!

GoldenEye 007 running  with ParaLLEl RDP at 8x internal upscale
GoldenEye 007 running with ParaLLEl RDP at 8x internal upscale
Super Mario 64 running on ParaLLEl RDP with 8x internal upscale
Super Mario 64 running on ParaLLEl RDP with 8x internal upscale
Star Fox 64 running on ParaLLEl RDP with 8x internal upscale
Star Fox 64 running on ParaLLEl RDP with 8x internal upscale
Perfect Dark running on ParaLLEl RDP with 8x internal upscale in high-res mode
Perfect Dark running on ParaLLEl RDP with 8x internal upscale in high-res mode
World Driver Championship running on ParaLLEl RDP with 8x internal upscale
World Driver Championship running on ParaLLEl RDP with 8x internal upscale

So where is it?

No ETAs, but it’s coming to you soon and will be available on RetroArch shortly for Windows, Linux and Android platforms. Stay tuned!

paraLLEl N64 RDP – Android support and Intel iGPU improvements – What you should know (and what to expect)

Ridge Racer 64 running on Parallel RDP on an Android phone (with RetroArch)
Ridge Racer 64 running on Parallel RDP on an Android phone (with RetroArch)

Themaister wrote an article a few days ago talking in-depth about all the work that has gone into ParaLLEl RDP since launch.

Two of the important things discussed in this article were:
* Intel iGPU performance
* Android support

What you might not have realized from reading the article is that with the right tweaks, you can already get ParaLLEl RDP to run reasonably well. As indicated in the article he wrote, Themaister will be looking at WSI Vulkan issues specifically related to RetroArch since there definitely do seem to be some issues that have to be resolved. In the meantime, we have to resort to some workarounds. Workarounds or not, they will do the job for now.

How to install and set it up

  • In RetroArch, go to Online Updater.
  • (If you have paraLLEl N64 already installed) – Select ‘Update Installed Cores’. This will update all the cores that you already installed.
  • (If you don’t have paraLLEl N64 installed already) – go to ‘Core Updater’, and select ‘Nintendo – Nintendo 64 (paraLLEl N64)’.
  • Now start up a game with this core.
    Go to the Quick Menu and go to ‘Options’. Scroll down the list until you reach ‘GFX Plugin’. Set this to ‘parallel’. Set ‘RSP plugin’ to ‘parallel’ as well.
  • For the changes to take effect, we now need to restart the core. You can either close the game or quit RetroArch and start the game up again.

Intel iGPU

What you should do for optimum performance right now:

  • For Intel iGPU, I have found that what makes the biggest difference by far (on Windows 10 at least) is to run it in windowed mode instead of fullscreen. Fullscreen mode will have horribly crippled performance by comparison.

Performance

Once you have done this, the performance will actually not be that far behind with a run-off-the-mill iGPU from say a 2080 Ti (in asynchronous mode). Sure, it’s still a bit slower by about ~30fps, but it’s no longer the massive gulf in performance it was before where even Angrylion was beating ParaLLEl RDP in the performance department.

With synchronous, the difference between say a 2080 Ti and an iGPU should be a bit more pronounced.

Hopefully in future RetroArch versions, it will no longer be necessary to have to resort to windowed mode for good performance with Intel iGPUs. For now, this workaround will do.

Android

What you should do for optimum performance right now:

  • Turn vsync off. Go to Settings -> Video -> Synchronization, and make sure that ‘Vertical Sync (Vsync)’ is disabled.

NOTE: It is imperative that you turn V-Sync off for now. If not, performance will be so badly crippled that even Angrylion will be faster by comparison. Fortunately, there will be no noticeable screen tearing even with Vsync disabled right now.

Performance

I tested ParaLLEl RDP on two devices:

  • Nvidia Shield TV (2015)
  • Samsung Galaxy S10 Plus (2019) [European Exynos model]

NOTE: The European model of the Galaxy S10 Plus used here has the Samsung Exynos SoC (System-On-A-Chip). Generally these perform worse than the US models of the Galaxy phones, which use a Qualcomm Snapdragon SoC instead. You should therefore expect significantly better performance on a US model.

Performance on Shield TV

Here are some rough performance figures for the Nvidia Shield TV –

Title Performance
Mortal Kombat Trilogy 87 to 94fps
Yoshi’s Story 99fps
Doom 64 90 to 117fps
Tetris 64 117fps
Starcraft 64 177fps

It’s hard to put an exact number on other games, but just from a solely gameplay-focused perspective, you can get a near-locked framerate with games like Legend of Zelda: Ocarina of Time and Super Mario 64 if you run the PAL versions (which limit the framerate to 50fps instead of 60fps with NTSC versions). There might still be the odd frame drop in certain graphics intensive scenes but nothing too serious.

Similarly, games like 1080 Snowboarding drop below fullspeed with the NTSC version, but running them with the PAL version is nearly a locked framerate in all but the most intensive scenes.

Performance on Samsung Galaxy S10 Plus

Performance on a high-end 2019 phone like the Galaxy S10 Plus can tend to be more variable, probably because of the aggressive dynamic throttling being done on phones. Sometimes performance would be a significant step above the Shield TV where it could run NTSC versions of games like Legend of Zelda: Ocarina of Time and Super Mario 64 at fullspeed with no problem (save for the very odd frame drop here and there in very rare scenes), and then at other times it would perform similarly to a Shield TV. Your mileage may vary there.

Conclusions

Overall, it’s clear that certain battles have to be won on the Vulkan side, especially when it comes down to having to disable vsync at all so far for acceptable performance.

We’d like to learn more from people who have a Samsung Galaxy S20 or a similar high end phone released in 2020. Even a Snapdragon version of the S10 Plus would produce better results than what we see here.

So, Low-Level N64 emulation, is it attainable on Android? Yes, with the proper Vulkan extensions, and provided you have a reasonably modern and fast high end phone. The Shield TV is also a decent mid-range performer considering its age. Far from every game runs at fullspeed yet but the potential is certainly there for this to be a real alternative to HLE based N64 emulation on Android as hardware grows more powerful over the years.

FAQ

Some specific issues should be addressed –

Game compatibility is significantly lower on Android right now

The mupen64plus-core part of ParaLLEl N64 is older than the one found in Mupen64plus next. While on PC this is not so much of an issue because of the generally mature (but slower) Hacktarux dynarec, on ARM platforms it is a different story since new_dynarec was in a premature state back then. Not only that, LLE RDP + RSP plugin compatibility with new_dynarec was not even a consideration back then. So some games might not work at all right now with Parallel RDP+RSP on Android.

ParaLLEl N64 will likely receive a mupen64plus-core update soon, and Mupen64Plus Next might also in the near future get ParaLLEl RDP + ParaLLEl RSP support. So this situation will sort itself out.

You get a display error showing ‘ERR’ on your Android device

The Vulkan driver for your GPU is likely missing these two Vulkan extensions, which ParaLLEl RDP requires.

VK_KHR_8bit_storage
VK_KHR_16bit_storage

(Intel iGPU) Performance is halved (or more) in fullscreen mode

Known issue, read above. These issues have been identified and it’s a matter of finding the appropriate solution for these issues.