Cores progress report – Catering to high-end desktops – Dolphin libretro core and others now supports resolutions of 8K and up!

Soul Calibur 2 running on the Dolphin core. Internal resolution is 12K, which gets downsampled to a 4K desktop resolution through Nvidia DSR.
Soul Calibur 2 running on the Dolphin core. Internal resolution is 12K, which gets downsampled to a 4K desktop resolution through Nvidia DSR.
Here at RetroArch/libretro, we have always insisted on catering to both the low-end as well as the high end. To further this purpose, we always make design considerations from this perspective, that whatever we do shouldn’t be at the cost of worse performance on lower specced hardware that we still support.

Newer generation emulators are increasingly catering to the high end and almost demand it by virtue of them being based on much more recent videogame systems. While testing RetroArch and various libretro cores on our new high-end Windows desktop PC, we noticed that we could really take things up a few notches to see what we could get out of the hardware.


While working on the Dolphin libretro core some more, we stumbled upon the issue that internal resolution increases were still not working properly. So while fixing that in the latest core, we felt that the default scaled resolution choices that Dolphin provides (up to 8x native resolution) weren’t really putting any stress on our Windows development box (a Core i7 7700K equipped with a Titan XP).

So, in the process we added some additional resolution options so you can get up to 12K. The highest possible resolution right now is 19x (12160×10032).

As for performance results, even at the highest 19x resolution, the average framerate was still around 81fps, although there were some frame drops here and there and I found it to be generally more safe to dial the internal resolution down to a more conservative 12x or 15x instead). 12x resolution would be 8680×6336, which is still well over 8K resolution.

Note that the screenshots here are compressed and they are downscaled to 4K resolution, which is my desktop resolution. This desktop resolution in turn is an Nvidia DSR custom resolution, so it effectively is a 4K resolution downsampled to my 1080p monitor. From that, I am running RetroArch with the Dolphin core. With RetroArch, downscaling is pretty much implicit and works on the fly, so through setting the internal resolution of the EFB framebuffer, I can go beyond 4K (unlike most games which just query the available desktop resolutions).

We ran some performance tests on Soul Calibur 2 with an uncapped framerate. Test box is a Core i7 7700k with 16GB of DDR4 3000MHz RAM, and an Nvidia Titan XP video card. We start out with the base 8x (slightly above 4K Ultra HD) resolution which is the highest integer scaled resolution that Dolphin usually supports. If you want to go beyond that on regular Dolphin, you have to input a custom resolution. Instead, we made the native resolution scales go all the way up to 19x.

On the Nvidia Control panel, nearly everything is maxed out – 8x anti-aliasing, MFAA, 16x Anisotropic filtering, FXAA, etc.

Resolution Performance (with OpenGL) Performance (with Vulkan)
8x (5120×4224) [for 5K] 166fps 192fps
9x (5760×4752) 165fps 192fps
10x (6400×5280) 164fps 196fps
11x (7040×5808) 163fps 197fps
12x (7680×6336) [for 8K] 161fps 193fps
13x (8320×6864) 155fps 193fps
14x (8960×7392) 152fps 193fps
15x (9600×7920) [for 9K] 139fps 193fps
16x (10240×8448) [for 10K] 126fps 172fps
17x (10880×8976) 115fps 152fps
18x (11520×9504) [for 12K] 102fps 137fps
19x (12160×10032) 93.4fps 123fps


OpenLara running at over 16K
OpenLara running at over 16K

The OpenLara core was previously capped at 1440p (2560×1440). We have added available resolutions now of up to 16K.

Resolution Performance
2560×1440 [for 1440p/2K] 642fps
3840×2160 [for 4K] 551fps
7680×4320 [for 8K] 407fps
15360×8640 [for 16K] 191fps
16000×9000 176fps


Craft core running at over 16K
Craft core running at over 16K

Previously, the Craft core supported only up to 1440p. Now it supports up to 16K and slightly higher.

For the Craft core, we are setting the ‘draw distance’ to 32, which is the highest available draw distance available to this core. With the draw distance set this far back, you can even see some pop-in right now (terrain that is not yet rendered and will only be rendered/shown when the viewer is closer in proximity to it).

Resolution Performance
2560×1600 [for 1440p/2K] 720fps
3840×2160 [for 4K] 646fps
7680×4320 [for 8K] 441fps
15360×8640 [for 16K] 190fps
16000×9000 168fps

Parallel N64 – Angrylion software renderer

This scene serves as our benchmark test for both the software Angrylion renderer as well as the Vulkan-based Parallel renderer.
This scene serves as our benchmark test for both the software Angrylion renderer as well as the Vulkan-based Parallel renderer.

So accurate software-based emulation of the N64 has remained an elusive pipe dream for decades. However, it seems things are finally changing now on high-end hardware.

This test was conducted on an Intel i7 7700K running at Boost Mode (4.80GHz). We are using both the OpenGL video driver and the Vulkan video driver for this test, and we are running the game Super Mario 64. The exact spot we are testing at it is at the Princess Peach castle courtyard.

Super Mario 64

Description Performance (with OpenGL) Performance (with Vulkan)
Angrylion [no VI filter] 73fps 75fps
Angrylion [with VI filter] 61fps 63fps

Quake 64

Description Performance (with OpenGL) Performance (with Vulkan)
Angrylion [no VI filter] 81fps 82.5fps
Angrylion [with VI filter] 68fps 72fps

Killer Instinct Gold

Description Performance (with OpenGL) Performance (with Vulkan)
Angrylion [no VI filter] 57.9fps 58.7fps
Angrylion [with VI filter] 54.6fps 55fps

GoldenEye 007

Tested at the Dam level – beginning

Description Performance (with OpenGL) Performance (with Vulkan)
Angrylion [no VI filter] 54.9fps 43.8fps
Angrylion [with VI filter] 45.6fps 40.9fps

Note that we are using the cxd4 RSP interpreter which, despite the SSE optimizations, would still be pretty slow compared to any RSP dynarec, so these results are impressive to say the least. There are games which dip more than this – for instance, Killer Instinct Gold can run at 48fps on the logo title screen, but on average, if you turn off VI filtering, most games should run at fullspeed with this configuration.

In case you didn’t notice already, Vulkan doesn’t really benefit us much when we do plain software rendering. We are talking maybe a conservative 3fps increase with VI filtering, and about 2fps or maybe even a bit less with VI turned off. Not much to brag about but it could help in case you barely get 60fps and you need a 2+ fps dip to avoid v-sync stutters.

Oddly enough, the sole exception to this is GoldenEye 007, where the tables are actually turned, and OpenGL actually leaps ahead of Vulkan quite significantly, conservatively by about 5fps with VI filter applied, and even higher with no VI filter. I tested this many times over to see if there was maybe a slight discrepancy going on, but I got the exact same results each and every time.

Parallel N64 – Parallel Vulkan renderer

Quake 64 on Parallel N64 - tested with both Angrylion and Parallel
Quake 64 on Parallel N64 – tested with both Angrylion and Parallel

So we have seen how software-based LLE RDP rendering runs. This puts all the workload on the CPU. So what if we reverse the situation and put it all on the GPU instead? That is essentially the promise of the Parallel Vulkan renderer. So let’s run the same tests on it.

This test was conducted on an Intel i7 7700K running at Boost Mode (4.80GHz). We are using the Vulkan video driver for this test, and we are running the game Super Mario 64. The exact spot we are testing at it is at the Princess Peach castle courtyard.

Super Mario 64

Description Performance
With synchronous RDP 192fps
Without synchronous RDP 222fps

Quake 64

Description Performance
With synchronous RDP 180fps
Without synchronous RDP 220fps

Killer Instinct Gold

Description Performance
With synchronous RDP 174fps
Without synchronous RDP 214fps

GoldenEye 007

Tested at the Dam level – beginning

Description Performance
With synchronous RDP 88fps
Without synchronous RDP 118fps

As you can see, performance nearly doubles when going from Angrylion to Parallel renderer with synchronous RDP enabled, and beyond with it disabled. Do note that asynchronous RDP is regarded as a hack and it can result in many framebuffer oriented glitches among other things, so it’s best to run with synchronous RDP for best results.

We are certain that by using the LLVM RSP dynarec, the performance difference between Angrylion and Parallel would widen even further. Even though there are still a few glitches and omissions in the Parallel renderer compared to Angrylion, it’s clear that there is a lot of promise to this approach of putting the RDP on the GPU.

Conclusion: It’s quite clear that even on a quad-core 4.8GHz i7 CPU, the CPU ‘nearly’ manages to run most games with Angrylion [software] at fullspeed but it doesn’t leave you with a lot of headroom really. Moving it to the GPU [through Parallel RDP] results in a doubling of performance with the conservative synchronous option enabled and even more if you decide to go with asynchronous mode (buggier but faster).

Beetle PSX

Previously, Beetle PSX would only provide internal resolution increases up to 8 times the original resolution. We have now extended this to 32 x for software and Vulkan, and 16x for OpenGL.

The results are surprising – while the Vulkan renderer is far more mature than the OpenGL renderer and implements the mask bit unlike the GL renderer (along with some other missing bits in the current GL renderer), the GL renderer leaps ahead in terms of performance at nearly every resolution.

Crash Bandicoot

Crash Bandicoot running at over 10K. Note this is being downsampled to 4K.
Crash Bandicoot running at over 10K. Note this is being downsampled to 4K.

Crash Bandicoot is a game that ran at a resolution of 512×240.

Resolution Performance (with OpenGL) [with PGXP] Performance (with OpenGL) [w/o PGXP] Performance (with Vulkan) [with PGXP] Performance (with Vulkan) [w/o PGXP] Performance (software OpenGL) Performance (software Vulkan)
8192×3840 [16x] [for 5K] 188.8fps 266fps 217fps 239fps 4.4fps 5.3fps
4096×1920 [8x] [for 2K] 216fps 296fps 218fps 240fps 16fps 17.5fps
2048×960 [4x] 215fps 296fps 216fps 239fps 52fps 57.9fps
1024×480 [2x] 216fps 296fps 216fps 239fps 138fps 145fps

Tekken 3

Tekken 3 running at over 10K, being downsampled to 4K.
Tekken 3 running at over 10K, being downsampled to 4K.

Tekken 3 is a game that ran at a resolution of 368×480.

Resolution Performance (with OpenGL) [with PGXP] Performance (with OpenGL) [w/o PGXP] Performance (with Vulkan) [with PGXP] Performance (with Vulkan) [w/o PGXP] Performance (software OpenGL) Performance (software Vulkan)
11776×15360 [32x] [for 12K] N/A N/A 127fps 127.4fps N/A N/A
5888×7680 [16x] [for 4K] 188.5fps 266fps 184.4fps 211fps 4.4fps 6.6fps
2944×3840 [8x] [for 2K] 186.5fps 208fps 183.5fps 269fps 22fps 25.2fps
1472×1920 [4x] 184.5fps 270fps 230.5fps 210fps 52fps 59.4fps
1024×480 [2x] 232fps 271fps 185.5fps 210fps 129fps 137fps


Dead or Alive 2 running at over 12K resolution on Reicast
Dead or Alive 2 running at over 12K resolution on Reicast

Daytona USA 2001 running at over 12K resolution on Reicast
Daytona USA 2001 running at over 12K resolution on Reicast

Sonic Adventure running at over 12K resolution on Reicast
Sonic Adventure running at over 12K resolution on Reicast

Dead or Alive 2

Description Performance
4480×3360 206fps
5120×3840 206fps
5760×4320 206fps
6400×4800 204fps
7040×5280 206fps
7680×5760 206fps
8320×6240 204fps
8960×6720 204fps
9600×7200 207fps
10240×7680 206fps
10880×8160 207fps
11520×8640 207fps
12160×9120 194fps
12800×9600 193fps

As you can see, it isn’t until we reach 12160×9120 that Reicast’s performance finally lets up from an almost consistent 206/207fps to a somewhat lower value. Do note that this was testing the same environment. When alpha effects and RTT (Render to Texture) effects are being applied onscreen, there may well be dips on the higher than 8K resolutions whereas 8K and below would be able to handle it with relative ease.

Mupen64plus – GlideN64 OpenGL renderer

Super Mario 64 running at 8K resolution with Gliden64.
Super Mario 64 running at 8K resolution with Gliden64.

This core uses Mupen64plus as the core emulator plus the GlideN64 OpenGL renderer.

Super Mario 64

Description Performance
3840×2880 – no MSAA 617fps
3840×2880 – 2x/4x MSAA 181fps
4160×3120 – no MSAA 568fps
4160×3120 – 2x/4x MSAA 112fps
4480×3360 – no MSAA 538fps
4480×3360 – 2x/4x MSAA 103fps
4800×3600 – no MSAA 524fps
4800×3600 – 2x/4x MSAA 94fps
5120×3840 – no MSAA 486fps
5120×3840 – 2x/4x MSAA 82fps
5440×4080 – no MSAA 199fps
5440×4080 – 2x/4x MSAA 80fps
5760×4320 – no MSAA 194fs
5760×4320 – 2x/4x MSAA 74fps
6080×4560 – no MSAA 190fps
6080×4560 – 2x/4x MSAA 68fps
6400×4800 – no MSAA 186fps
6400×4800 – 2x/4x MSAA 61.3fps
7680×4320 – no MSAA 183fps
7680×4320 – 2x/4x MSAA 39.4fps

GoldenEye 007

Tested at the Dam level – beginning

Description Performance
3840×2880 – no MSAA 406fps
3840×2880 – 2x/4x MSAA 100fps
4160×3120 – no MSAA 397fps
4160×3120 – 2x/4x MSAA 65fps
4480×3360 – no MSAA 375fps
4480×3360 – 2x/4x MSAA 60fps
4800×3600 – no MSAA 342fps
4800×3600 – 2x/4x MSAA 54fps
5120×3840 – no MSAA 310fps
5120×3840 – 2x/4x MSAA 51fps
5440×4080 – no MSAA 70fps
5440×4080 – 2x/4x MSAA 46fps
5760×4320 – no MSAA 78.9fs
5760×4320 – 2x/4x MSAA 42fps
6080×4560 – no MSAA 86fps
6080×4560 – 2x/4x MSAA 37fps
6400×4800 – no MSAA 79fps
6400×4800 – 2x/4x MSAA 27fps
7680×4320 – no MSAA 79fps
7680×4320 – 2x/4x MSAA 33.2fps

Preface: Immediately after going beyond 3840×2880 (the slightly-higher than 4K resolution), we notice that turning on MSAA results in several black solid colored strips being rendered where there should be textures and geometry. Again, we notice that enabling MSAA takes a huge performance hit. It doesn’t matter either if you apply 2 or 4 samples, it is uniformly slow. We also notice several rendering bottlenecks in throughput – as soon as we move from 5120×3840 to 5440×4080 (a relatively minor bump), we go from 310fps to suddenly 70fps – a huge dropoff point. Suffice to say, while you can play with Reicast (Dreamcast emulator) and Dolphin (Gamecube/Wii) at 8K without effort and even have enough headroom to go all the way to 12K, don’t try this anytime soon with Gliden64.

We suspect there are several huge bottlenecks in this renderer that prevent it from reaching higher performance, especially since people on 1060s have also complained about less than stellar performance. That being said, there are certain advantages to Gliden64 vs. Glide64, it emulates certain FBO effects which GLide64 doesn’t. It also is less accurate than Glide64 in other areas, so you have to pick your poison on a per-game basis.

We still believe that the future of N64 emulation relies more on accurate renderers like Parallel RDP which are not riddled with per-game hacks vs. the traditional HLE RDP approach as seen in Gliden64 and Glide64. Nevertheless, people love their internal resolution upscaling, so there will always exist a builtin audience for these renderers, and it’s always nice to be able to have choices.

New core: Dolphin (Windows/Linux) (Alpha release!)

Dolphin is now available as a libretro core! Dolphin is a popular Gamecube/Wii emulator. Keep in mind that the current version of this libretro core is considered an alpha release. Lots of work still remains but we intend to get it done, and hopefully receive some help along the way as well.

If you’d like to know more about the project, please visit its site here. We would like to ask you to not bother them with issues yet that happen in this libretro core, as things are not quite finished yet and it might take up their time unnecessarily.

Available for

The Dolphin core is currently available for:

  • Windows (64bit)
  • Linux (64bit)

Further requirements: This core requires that you turn on ‘Enable Shared Hardware Context’, otherwise you will only see a single texture being displayed onscreen instead of the game screen.

Note for macOS users: There is currently no ‘working’ macOS version available because of the aforementioned reason. Please be patient and keep the faith, we have not forgotten about macOS users and we have not relegated them to second-class citizen either. Just going to take a little bit of time before we sort this out.

How to get it

  1. Start RetroArch.
  2. Go to Online Updater -> Update Cores.
  3. Download ‘Gamecube/Wii (Dolphin)’ from the list.

Important! How to turn on shared hardware context (required)

This core also requires that you turn on ‘Enable Shared Hardware Context’. If you don’t do this, you will only see a black screen.

First, you need to ensure that ‘Show Advanced Settings’ is turned on. Go to Settings -> User Interface and turn ‘Show Advanced Settings’ on.

Now, go back, and go to Settings -> Core.

Once inside the ‘Core’ settings, set ‘Enable Shared Hardware Context’ to ON.

The upcoming version of RetroArch (version 1.6.1) might make it unnecessary to toggle this, saving you the hassle of having to do this.

How to use the demo

We assume you have already followed the steps in ‘How to get it’, and that the core is already installed.

  • Go to Online Updater -> Content Downloader.

  • Go to ‘Dolphin’, and select the file ‘’.

  • You should now have the required game INI settings placed in the proper directory. Dolphin will look inside this directory for game-specific recommended settings.


NOTE: You can also place the system files inside your System directory, or even the game’s save directory. It looks for a directory called either ‘Dolphin’ or ‘dolphin-emu’ inside those directories.


Right now, the main input device implemented is a GameCube controller. We have laid this out on the RetroPad as follows –

B button – B button

Y button – Y button

Start button – Start button

D-pad – D-pad

A button – A button

X button – X button

L1 – L button/trigger

R1 – R button/trigger

R2 – Z trigger

Left analog stick – Control Stick Left

Right analog Stick – C-Stick

You can reconfigure these controls at your discretion by going to Quick Menu -> Controls while in-game.

Extra features

To access these settings, while the game is running, go to the RetroArch menu, and select 'Quick Menu -> Options'.
To access these settings, while the game is running, go to the RetroArch menu, and select ‘Quick Menu -> Options’.
  • Renderer: Hardware or Software. If you start this core in RetroArch with “Renderer” set to Hardware, it will default to OpenGL or Vulkan depending on which video driver you have selected inside RetroArch. If you choose “Software”, it will use the software renderer instead. It will be dogslow though..
  • Fastmem: Fastmem configures a 4GB range of memory to match the Wii’s address space, and PPC memory accesses are translated directly to x86 memory accesses into this region. Might be faster.
  • PAL60: Turn on PAL60 mode. This was a TV output mode used by Gamecube/Wii games so the game could run at 60Hz instead of 50Hz. Certain games like Metroid Prime 2 would even require this.
  • DSP mode: Can be set to either HLE (High-Level Emulation) or LLE (Low-Level Emulation). HLE is much faster while LLE is much more accurate but tends to be slower. Certain games will require LLE audio, but not the majority.
  • Internal resolution (restart): You can change the internal resolution here. In order for the changes to take effect, you need to restart the core.
  • Skip EFB Access From CPU: This can kill the speed of Dolphin (for those without a top CPU), but it’s necessary for some features.
  • Store EFB Copies To Texture Only: This is a hack. By unchecking it, you’re allowing the emulator to go the more accurate path of storing EFB Copies to RAM (and allowing the emulator to more or less fully emulate what the Wii can do with EFB Copies) which is required for Pokemon Snap to work.
  • Scaled EFB Copy: Prevent overpixeled textures by upscaling them (some games need this option).

More core options will be added soon!


Some of the features that are currently implemented:

  • Working OpenGL renderer. Requires core GL 3.3 context and requires ‘shared hardware context’ to be enabled (see above instructions).
  • Working Vulkan renderer. Might still have some ghosting/frame pacing issues.
  • Working software renderer.
  • Working dynamic recompiler for x86-x64.
  • Working Nintendo Gamecube/Wii Classic pad support.
  • Disabled analytics.
  • Savestates are working.
  • Internal resolution can be changed by going to Quick Menu -> Options and changing ‘Internal Resolution’. This currently requires a restart of the core.


We are not calling this an alpha release for nothing. Although it took a lot of work to get to the state we are in right now, do consider this:

  • We have not implemented pass-through Gamecube/Wiimote support at all yet.
  • Right now we are not using the audio mixer, so games with streaming audio (like Super Monkey Ball/Ikaruga) might be missing their ingame music. We intend to implement this of course. The games affected can be found on this list here.
  • We are a few revisions behind upstream right now. The intent is there to update to the latest sources. Some changes were made by the initial porter of this core to support PIC inside the dynarec, and upstream has since done their own take on it. The initial porter disagreed with the implementation of this, but we will make a suitable enough decision later on as to whether to go with the initial porter’s take on it or upstream’s. Do consider that there are valid reasons sometimes for diverging from upstream for the sake of improving the quality of the port.
  • There are some games that currently display some issues which aren’t there in standalone. These seem to be renderer-related. For instance, Resident Evil only shows a black screen after the company logo screens with the OpenGL renderer, yet it renders and works fine with the Vulkan renderer. These issues will still need to be resolved..
  • There might be issues with more than one gamepad right now.
  • Savestates are not reliable right now. It’s technically hooked up but it’s bug/crash-prone.
  • We still intend to have built-in game setting defaults so that even the current step of having to download these Game Settings from our buildbot is unnecessary. A prime design goal of libretro cores is that not only should there be as little dynamic library dependencies as possible, but also as few external data file requirements. So in other words, for certain data files to exist in some random directory is often regarded as not being nearly portable enough for our tastes. We rather like that the entire program is encapsulated inside one dynamic library file and that is all there is to a working configuration.

Note on maintenance

We’d like to stress that porting Dolphin is a big endeavor and undertaking, and as such, Dolphin developers and users alike should consider this a code experiment laboratory right now. This is also why we’d really appreciate it if anybody DO NOT BUG the Dolphin project right now on any issues they might experience in this alpha core yet. We were pretty much left to our own devices porting this. The intent is for us to get to complete feature parity with the standalone version and once we have managed to do so, figure out a way to get this in a form so that it can be upstreamed again. If there is going to be a hard fork of Dolphin, it will be separate from a mainline, upstream-compatible Dolphin core so that people who always prefer to be in lockstep with upstream will get what they want, while people who would like to see the advantages of a hard fork could still go for that separate version as well. We are trying to appease both sides here, certain codebases lend themselves better to libretro core-ification vs. others and often developers and users alike are not fully cognizant of the different approach this requires. That all being said, we intend to get along better with emulator teams provided we are given a fair shake and cooperation can happen instead of antagonism. We do not intend to step on anybody’s toes, and we’d like to be able to work together with anybody. There is some interests at least amongst some Dolphin devs to help us finish up these remaining parts, which is very refreshing to see.

RetroArch 1.6.0 – Released!

RetroArch 1.6.0 has just been released!

Get it here.

PS3 port

Sony might have just ended production of the PlayStation3 in Japan as of two days ago, but we are still supporting it for RetroArch regardless! The last stable release for RA PS3 was back in 1.3.6 days, so the remaining diehard PS3 jailbroken users will be glad to hear that 1.6.0 is available for PS3 right now!

We are only supplying the DEX version. We will assume PS3 repackers will be able to make a CEX version out of this.

PowerPC OSX port

It’s also been a long time since we released a new build of the PowerPC OSX port. We have bundled the cores that have been ported to PowerPC inside the main app bundle. To use this version, you need at least MacOS X version 10.5 (Leopard) and a PowerPC Mac.

Wii port

The Wii port has received stability fixes amongst other things.

WiiU port

Each and every RetroArch release is always a community effort. FIX94 and aliaspider have made numerous improvements to the WiiU version of RetroArch. For one, it has HID controller support now, which means you can use gamepads other than the default Wii U gamepads on it. There is also support for the XMB and MaterialUI menu drivers. There are some graphical touches missing from it such as shader effects though, so don’t expect to see the fancy ribbon animating on the WiiU yet.

Overall, it is a big improvement on what went before. Netplay should also start to work on WiiU.

PS Vita port

Frangarcj has provided patches which fixes the slow file I/O speeds for the Vita port, an issue which afflicts a lot of homebrew on the Vita actually. Menu performance regressions should also be fixed. For instance, the menu was previously erroneously running at 30fps.

Windows version improvements

Windows users now can use the WASAPI audio driver for the first time, which should allow for lower-latency audio. And if that isn’t enough, there is another successfully completed bounty, a RawInput input driver, which should allow for lower-latency low-level input.

Vulkan renderer

The Vulkan renderer has received some improvements. It should now support Unicode font rendering and render certain accented French characters correctly.


There have been several localization improvements. The German and Japanese translations have been updated, and Korean text should finally display properly.

Audio mixer

Now here is a real standout feature courtesy of leiradel we are excited to tell you about! RetroArch now has a built-in audio mixer which allows you to mix up to 8 separate audio streams and splice them together with the game’s audio. To put it more simply, this means custom soundtrack support from inside RetroArch!

Currently, there are a couple of limitations here –

1 – The only supported audio files so far are Ogg Vorbis files (.ogg) and regular Wave files (.wav). Over time, there will be more audio codecs supported.

2 – The audio mixer tracks will only play when the game is running. They will not play while inside the menu, unless you turn off ‘Pause when menu activated’ (Settings -> User Interface -> Menu).

3 – You can only mix up to 8 simultaneous audio streams so far. Looping is not yet available, neither is pausing an audio stream or changing a stream’s volume. All of these might be added in later versions of RetroArch though.

Here is a quick demonstration of how you use it:

While the game is running, go to Load Content, and select a supported audio file (either an Ogg Vorbis .ogg file or a .wav file)
While the game is running, go to Load Content, and select a supported audio file (either an Ogg Vorbis .ogg file or a .wav file)
Select ‘Add to MIxer’. If the game is already running, this should start playing the music immediately and also add it to your music collection.
You can easily access this music track at any point in time from this point on by going to your Music tab inside the XMB. You can then start mixing the audio again by selecting it again and choosing ‘Add to mixer’.


Here is a changelog of most of the things that changed:

– AUTOSAVE/SRAM – Fix bug #3829 / #4820 (
– ENDIANNESS: Fixed database scanning. Should fix scanning on PS3/WiiU/Wii, etc.
– NET: Fix bug #4703 (
– ANDROID: Runtime permission checking
– ANDROID: Improve autoconf fallback
– ANDROID: Improve shield portable/gamepad device grouping workaround
– ANDROID: Allow remotes to retain OK/Cancel position when menu_swap_ok_cancel is enabled
– LOCALIZATION: Update/finish French translation
– LOCALIZATION: Update German translation
– LOCALIZATION: Update Japanese translation
– LOCALIZATION/GUI: Korean font should display properly now with XMB/MaterialUI’s default font
– MENU: Improved rendering for XMB ribbon; using additive blending (Vulkan/GL)
– OSX/MACOS: Fixes serious memory leak
– WINDOWS: Added WASAPI audio driver for low-latency audio. Both shared and exclusive mode.
– WINDOWS: Added RawInput input driver for low-latency, low-level input.
– WINDOWS: Core mouse input should be relative again in cores
– MISC: Various frontend optimizations.
– VIDEO: Fix threaded video regression; tickering of menu entries would no longer work.
– WII: Fix crashing issues which could occur with the dummy core
– WIIU: HID Controller support
– WIIU: XMB/MaterialUI menu driver support
– WIIU: Initial network/netplay support
– LOBBIES: Fallback to filename based matching if no CRC matches are found (for people making playlists by hand)
– LOBBIES: GUI refinement, show stop hosting when a host has been started, show disconnect when playing as client
– LOBBIES: if the game is already loaded it will try to connect directly instead of re-loading content (non-fullpath cores only)
– LOBBIES: unify both netplay menus
– THUMBNAILS: Thumbnails show up now in Load Content -> Collection, Information -> Database
– VITA: Fix slow I/O
– VITA: Fix 30fps menu (poke into input now instead of reading the entire input buffer which apparently is slow)
– VITA: Fix frame throttle
– VULKAN: Unicode font rendering support. Should fix bad character encoding for French characters, etc.
– VULKAN: Fix some crashes on loading some thumbnails
– AUDIO: Audio mixer support. Mix up to 8 streams with the game’s audio.

New Lakka 2.1 RC release!

A new release candidate of Lakka, our popular set-top box solution powered by RetroArch, was recently released!

Please read more about it here.

Important shader-related changes

Please read hunterk’s extensive article on some organizational changes we are making to our popular shaders collection.

Upcoming events

Stay tuned for our first official unveiling of the Dolphin libretro core in the upcoming days, as well as releases of OpenLara, PX-68K, Neko Project II, Redream and other new cores! There will also be a survey/poll which will let you decide which cores we are going to port next!