Site icon Libretro

Libretro Cores Progress Report – February 5, 2020 (Big updates for N64, Dreamcast, PlayStation1, Saturn and 3DO emulator cores!)

Our last core progress report was on January 9, 2019. Below we detail the most significant changes to all the Libretro cores we and/or upstream partners maintain. We are listing changes that have happened since then.

How to update your cores in RetroArch

There are two ways to update your cores:

a – If you have already installed the core before, you can go to Online Updater and select ‘Update Installed Cores’.

b – If you haven’t installed the core yet, go to Online Updater, ‘Core Updater’, and select the core from the list that you want to install.

Parallel N64


Description: Nintendo 64 emulator core

Parallel RSP has been completely rewritten to use GNU Lighting instead of LLVM.

Advantages:
* LLVM was a big dependency. When statically linking this in, the core could become as big as 80MB non-stripped and 60MB stripped. Contrast this to GNU Lightning where we are sitting at 3.6MB non-stripped. LLVM also was not trivial to port to other platforms as easily as GNU Lightning. This means that Parallel RSP will make its way to Android and Switch (there is already an Aarch64 backend being written by m4xw)

* There are no more micro stutters and stalls that plagued the LLVM implementation. For instance – bringing up the auto-map in Doom 64, or the first menu screen transitions in F-Zero X, or firing your gun for the first time in Quake 64 – all of these would add temporary 1 second or more stalls the first time a code block was being compiled. With GNU Lightning, there are no such issues.

Disadvantages:
* Code generation is quite naive compared to LLVM’s, so there is somewhat of a performance tradeoff compared to the LLVM implementation. We estimate we lose about 5 to 8fps compared to the LLVM implementation. However, no microstutters/stalls and no more LLVM dependency makes it worth it, and there are ways to win this performance back and go further beyond in departments other than parallel RSP anyway.

Flycast


Description: Sega Dreamcast emulator core

Important updates

Flycast – Better saturate colors when converting textures to higher precision

Flycast – fix texture bleeding case when upscaling

Increased NAOMI Arcade game compatibility

Flyinghead has been busy improving arcade emulation support.

Netlink support is being worked on for Gun Survivor 2 Biohazard Code: Veronica. This is an arcade game adaption of Resident Evil Code: Veronica. It was also later released on PlayStation2. It never made the transition to the home on Dreamcast.

Second is Mazan – Flash of The Blade. The controls were not emulated before. This game is actually fairly unique in that not only was it a custom Naomi hardware design by Namco (more capable GPUs that could operate in an array), but it also had an unique input device.


It used motion sensing technology to detect swings you would make with the sword. Yes, that’s right, a motion sensing sword is your primary input device in this game.

(Upcoming) Accurate video output simulation – PowerVR 2 Post-process filtering

Leilei and Flyinghead got together to add something that accuracy purists might love. This is an upcoming feature that will be available soon –

We’ve added a couple of video output postprocessing options. To be exact, it’s an internal 24->16-bit buffer post-dithering pipeline stage. Lei-lei did this reversal of the PowerVR effects with his PowerVR PCX2 card (which has the same exact post-dithering as the newer PVR GPUs) and observing lossless official press release screenshots and xjas’s VGA capture dump.

If you recall, during the PS2’s early launch, people would often remark that the Dreamcast’s video output appeared crisper and had anti-aliasing applied whereas PS2 launch games appeared heavily aliased. In truth, what was going on was not really full-scene anti-aliasing or anything to that effect. Instead, it was a simple vertical blur the PowerVR2 GPU in the Dreamcast did to combat interlace flicker on composite video output.
The GameCube did something similar with the copy filters on a few games. Some of Sonic Team’s games on GameCube for instance did a similar vertical blur for the same deflicker purpose.

There was also noticeable VGA signal loss included in the VGA output when connecting your Dreamcast to a monitor with a VGA cable. It gives the screen a green hue and adds a ton of feedback instead of it being a clean dithered 16bpp image. This is also an option in the frontend shader, and we hope to add this too to Flycast as an optional feature.

You can now enable this with the GL renderer. If you’d like to use this shader in other cores and apply it as a frontend shader, you can do that too – we added the shader to the GLSL and Slang shader packs (see gpu/powervr2).

Frame comparison at native resolution

Frame comparison at 5120×3840

Changelog

Beetle PSX


Description: Sony PlayStation1 emulator core

Some important updates for Beetle PSX too – Lightning/Lightrec (the new dynarec technology being used) has seen many updates and improvements. Aarch64 compatibility should be a lot better now. ARMv7 is still a Work-In-Progress and still has many issues.

It’s now possible to set DMA/GPU Event Cycles to values as high as 1024. 1024 can offer a significant speed boost, but some games might not boot with this setting enabled. Test it yourself with a game of your choosing and see if it works reliably before you decide. You can always go for a lower value and see if that works better, while you don’t lose too much performance in the process.

So, to address the previous limitations of the dynarec – the two big ones were that runahead did not work, and that PGXP did not work with the dynarec enabled. Runahead is now working for software rendering mode, so that part is fulfilled (since hardware rendering not working reliably is not a core issue). As for PGXP, it now works with dynarec, but you will see a steep decline in performance, bringing you to performance levels just a little bit better than interpreter mode. However, there are plans to make PGXP part of the dynarec as well, which could take care of this issue.

Some performance tips for people that want to get the most out of their device:
* Set Dynarec Code Invalidation to ‘DMA Only (Slightly Faster)’. If it causes no issues in a game, this should give you a not-insignificant performance boost in some games.
* Set Dynarec DMA/GPU Event Cycles to a higher value than the default 128 if you can get away with it. If a game starts crashing or no longer boots from the BIOS screen, then you know you set it too high. Setting DMA Cycles to 1024 can have a big impact on maximum framerate.
* Software Framebuffer can be disabled for games that don’t make use of framebuffer readback. Try to turn this off if you are using the Vulkan hardware renderer. If you find certain graphics artefacts all of a sudden that were previously not there, you might have to turn this setting back on to get rid of the glitches.
* The Vulkan renderer right now might be a bit slower than the Software renderer. Some things you can try to bring the performance more in line would be to disable things like ‘Adaptive smoothing’, but if there is still a big performance gulf, you should resort to the Software renderer.
* PGXP right now will have a massive impact on performance with the dynarec. Turn it off if you care about getting the best performance possible.

4DO


Description: 3DO emulator core

To learn more about some of the recent developments surrounding 4DO, be sure to read our dedicated article on this.

Beetle Saturn

Description: Sega Saturn emulator core

Beetle Wswan

Description: Bandai WonderSwan/WonderSwan Color emulator core

Beetle Supergrafx

Description: Supergrafx emulator core

NeoCD

Description: SNK Neo Geo CD emulator core

Mupen64plus Next

Description: Nintendo 64 emulator core

Note: Stay tuned for a lot of great updates coming out over the coming months, featuring threaded rendering as well as multi plugin support!

bsnes hd beta

Description: Super Nintendo emulator core

Boom3

Description: Doom 3 game engine core

P-UAE

Description: Commodore Amiga emulator

Final Burn Neo

Description: Multi-system arcade emulator core

LRmame

Description: Multi-system arcade emulator core

NP2kai

Description: PC-9801 series emulator

Frodo

Description: Commodore 64 emulator

Kronos

Description: Sega Saturn emulator core

FCEUmm

Description: NES emulator core

NOTE: All changes courtesy of negativeexponent

Genesis Plus GX

Description: Sega Genesis/Mega Drive/Master System/Game Gear emulator

SMS-Plus GX

Description: Sega Master System/Game Gear emulator

Picodrive

Description: Sega Genesis/Mega Drive/Game Gear/Master System/Sega CD/32X emulator core

mgba

Description: Game Boy Advance emulator core

Mesen

Description: NES emulator core

PCSX ReARMed

Description: Sony PlayStation1 emulator core

Snes9x 2005

Description: Super Nintendo emulator core

TIC-80

Description: TIC-80 emulator core

PX68K Libretro

Description: NEC X68000 home computer emulator

Exit mobile version